480 lines
17 KiB
CoffeeScript
480 lines
17 KiB
CoffeeScript
|
{listToString, listToVector, pairp, cons, car, cdr, caar, cddr, cdar,
|
||
|
cadr, caadr, cadar, caddr, nilp, nil, setcdr,
|
||
|
metacadr, setcar} = require "cons-lists/lists"
|
||
|
{length} = require "cons-lists/reduce"
|
||
|
{normalizeForms, normalizeForm} = require "../chapter1/astToList"
|
||
|
{Node, Comment, Symbol} = require '../chapter1/reader_types'
|
||
|
{inspect} = require 'util'
|
||
|
|
||
|
itap = (a) -> return inspect a, true, null, false
|
||
|
|
||
|
class LispInterpreterError extends Error
|
||
|
name: 'LispInterpreterError'
|
||
|
constructor: (@message) ->
|
||
|
|
||
|
the_false_value = (cons "false", "boolean")
|
||
|
|
||
|
eq = (id1, id2) ->
|
||
|
if id1 instanceof Symbol and id2 instanceof Symbol
|
||
|
return id1.name == id2.name
|
||
|
id1 == id2
|
||
|
|
||
|
# Only called in rich node mode...
|
||
|
|
||
|
astSymbolsToLispSymbols = (node) ->
|
||
|
return nil if nilp node
|
||
|
throw (new LispInterpreterError "Not a list of variable names") if not node.type == 'list'
|
||
|
handler = (cell) ->
|
||
|
return nil if nilp cell
|
||
|
cons (car cell).value, (handler cdr cell)
|
||
|
handler node.value
|
||
|
|
||
|
cadddr = metacadr('cadddr')
|
||
|
|
||
|
intlistp = (node) -> node.type == 'list'
|
||
|
intpairp = (node) -> node.type == 'list' and ((node.value.length < 2) or node.value[1].node.type != 'list')
|
||
|
intsymbolp = (node) -> node.type == 'symbol' or node instanceof Symbol
|
||
|
intnumberp = (node) -> node.type == 'number'
|
||
|
intstringp = (node) -> node.type == 'string'
|
||
|
intcommentp = (node) -> node.type == 'comment'
|
||
|
intnvalu = (node) -> node.value
|
||
|
intatomp = (node) -> node.type in ['symbol', 'number', 'string']
|
||
|
intnullp = (node) -> node.type == 'symbol' and node.value.name == 'null'
|
||
|
intmksymbols = (list) -> astSymbolsToLispSymbols(list)
|
||
|
|
||
|
# The hairness of this makes me doubt the wisdom of using Javascript.
|
||
|
|
||
|
sBehavior = new Symbol 'behavior'
|
||
|
sBoolean = new Symbol 'boolean'
|
||
|
sBoolify = new Symbol 'boolify'
|
||
|
sFunction = new Symbol 'function'
|
||
|
sSymbol = new Symbol 'symbol'
|
||
|
sString = new Symbol 'string'
|
||
|
sValue = new Symbol 'chars'
|
||
|
sName = new Symbol 'name'
|
||
|
sNumber = new Symbol 'number'
|
||
|
sNull = new Symbol 'null'
|
||
|
sTag = new Symbol 'tag'
|
||
|
sType = new Symbol 'type'
|
||
|
sValue = new Symbol 'value'
|
||
|
sPair = new Symbol 'pair'
|
||
|
sCar = new Symbol 'car'
|
||
|
sCdr = new Symbol 'cdr'
|
||
|
sSetCar = new Symbol 'setcar'
|
||
|
sSetCdr = new Symbol 'setcdr'
|
||
|
|
||
|
prox =
|
||
|
"quote": (body, env, mem, kont) -> evaluateQuote (cadr body), env, mem, kont
|
||
|
"if": (body, env, mem, kont) -> evaluateIf (cadr body), (caddr body), (cadddr body), env, mem, kont
|
||
|
"begin": (body, env, mem, kont) -> evaluateBegin (cdr body), env, mem, kont
|
||
|
"set!": (body, env, mem, kont) -> evaluateSet (intnvalu cadr body), (caddr body), env, mem, kont
|
||
|
"lambda": (body, env, mem, kont) -> evaluateLambda (intmksymbols cadr body), (cddr body), env, mem, kont
|
||
|
"or": (body, env, mem, kont) -> evaluateOr (cadr body), (caddr body), env, mem, kont
|
||
|
|
||
|
# ___ _ _
|
||
|
# | __|_ ____ _| |_ _ __ _| |_ ___ _ _
|
||
|
# | _|\ V / _` | | || / _` | _/ _ \ '_|
|
||
|
# |___|\_/\__,_|_|\_,_\__,_|\__\___/_|
|
||
|
#
|
||
|
|
||
|
transcode = (value, mem, qont) ->
|
||
|
forms = [
|
||
|
[intnullp, -> qont theEmptyList, mem],
|
||
|
[((v) -> intsymbolp(v) and v in ['#t', '#f']), (-> qont (createBoolean value), mem)]
|
||
|
[intsymbolp, (-> qont (createSymbol value), mem)]
|
||
|
[intnumberp, (-> qont (createNumber value), mem)]
|
||
|
[intstringp, (-> qont (createString value), mem)]
|
||
|
[intlistp, (-> transcode (car intnvalu value), mem, (addr, mem2) ->
|
||
|
(transcode (cdr intvalu value), mem2, (d, mem3) ->
|
||
|
(allocatePair addr, d, mem3, qont)))]
|
||
|
]
|
||
|
found = (form[1] for form in forms when form[0](value))
|
||
|
if found.length != 1
|
||
|
throw new LispInterpreterError "Bad transcode match for #{value}"
|
||
|
found[0]()
|
||
|
|
||
|
transcode2 = (value, mem, qont) ->
|
||
|
forms = [
|
||
|
[((v) -> v instanceof Symbol and v.name == 'null'), (-> qont theEmptyList, mem)],
|
||
|
[((v) -> v instanceof Symbol and v.name in ['#t', '#f']), (-> qont (createBoolean value), mem)]
|
||
|
[((v) -> v instanceof Symbol), (-> qont (createSymbol value), mem)]
|
||
|
[((v) -> typeof v == 'string'), (-> qont (createString value), mem)]
|
||
|
[((v) -> typeof v == 'number'), (-> qont (createNumber value), mem)]
|
||
|
[((v) -> v.__type == 'list'), (-> transcode (car value), mem, (addr, mem2) ->
|
||
|
(transcode (cdr value), mem2, (d, mem3) ->
|
||
|
(allocatePair addr, d, mem3, qont)))]
|
||
|
]
|
||
|
found = (form[1] for form in forms when form[0](value))
|
||
|
if found.length < 1
|
||
|
throw new LispInterpreterError "Bad transcode match for #{value}"
|
||
|
found[0]()
|
||
|
|
||
|
|
||
|
transcodeBack = (value, mem) ->
|
||
|
forms = [
|
||
|
[sBoolean, ((v) -> ((v sBoolify) true, false))]
|
||
|
[sSymbol, ((v) -> (v sName))]
|
||
|
[sString, ((v) -> (v sValue))]
|
||
|
[sNumber, ((v) -> (v sValue))]
|
||
|
[sPair, ((v) ->
|
||
|
cons (transcodeBack (mem (v sCar)), mem), (transcodeBack (mem (v sCdr)), mem))]
|
||
|
[sFunction, (v) -> v]
|
||
|
]
|
||
|
found = (form[1] for form in forms when (eq (value sType), form[0]))
|
||
|
if found.length != 1
|
||
|
throw new LispInterpreterError "Bad transcode-back match for #{value}"
|
||
|
found[0](value)
|
||
|
|
||
|
evaluate = (exp, env, mem, kont) ->
|
||
|
if intatomp exp
|
||
|
if intsymbolp exp
|
||
|
evaluateVariable (intnvalu exp), env, mem, kont
|
||
|
else
|
||
|
evaluateQuote exp, env, mem, kont
|
||
|
else
|
||
|
body = intnvalu exp
|
||
|
head = car body
|
||
|
pname = (intnvalu head)
|
||
|
if pname instanceof Symbol and prox[pname.name]?
|
||
|
prox[pname.name](body, env, mem, kont)
|
||
|
else
|
||
|
evaluateApplication head, (cdr body), env, mem, kont
|
||
|
|
||
|
env_init = (id) ->
|
||
|
throw new LispInterpreterError "No binding for " + id
|
||
|
|
||
|
# This is basically the core definition of 'mem': it returns a
|
||
|
# function enclosing the address (a monotomically increasing number as
|
||
|
# memory is allocated) and the value. Update is passed the current
|
||
|
# memory, the address, and the value; it returns a function that says
|
||
|
# "If the requested address is my address, return my value, otherwise
|
||
|
# I'll call the memory handed to me at creation time with the address,
|
||
|
# and it'll go down the line." Update basically adds to a 'stack'
|
||
|
# built entirely out of pointers to the base mem.
|
||
|
|
||
|
update = (mem, addr, value) ->
|
||
|
(addra) -> if (eq addra, addr) then value else (mem addra)
|
||
|
|
||
|
updates = (mem, addrs, values) ->
|
||
|
if (pairp addrs)
|
||
|
updates (update mem, (car addrs), (car values)), (cdr addrs), (cdr values)
|
||
|
else
|
||
|
mem
|
||
|
|
||
|
# Memory location zero contains the position of the stack.
|
||
|
|
||
|
expandStore = (highLocation, mem) ->
|
||
|
update mem, 0, highLocation
|
||
|
|
||
|
mem_init = expandStore 0, (a) ->
|
||
|
throw new LispInterpreterError "No such address #{a}"
|
||
|
|
||
|
newLocation = (mem) ->
|
||
|
(mem 0) + 1
|
||
|
|
||
|
evaluateVariable = (name, env, mem, kont) ->
|
||
|
kont (mem (env name)), mem
|
||
|
|
||
|
evaluateSet = (name, exp, env, mem, kont) ->
|
||
|
evaluate exp, env, mem, (value, mem2) ->
|
||
|
kont value, (update mem2, (env name), value)
|
||
|
|
||
|
evaluateApplication = (exp, exprs, env, mem, kont) ->
|
||
|
|
||
|
# In chapter 3, this was a series of jumping continuations chasing
|
||
|
# each other. Here, all of the continuations are kept in one place,
|
||
|
# and the argument list is built by tail-calls to evaluateArguments
|
||
|
# until the list is exhausted, at which point the continuation is
|
||
|
# called. The continuation is built in the second paragraph below.
|
||
|
|
||
|
evaluateArguments = (exprs, env, mem, kont) ->
|
||
|
if (pairp exprs)
|
||
|
evaluate (car exprs), env, mem, (value, mem2) ->
|
||
|
evaluateArguments (cdr exprs), env, mem2, (value2, mem3) ->
|
||
|
kont (cons value, value2), mem3
|
||
|
else
|
||
|
kont cons(), mem
|
||
|
|
||
|
evaluate exp, env, mem, (fun, mem2) ->
|
||
|
evaluateArguments exprs, env, mem2, (value2, mem3) ->
|
||
|
if eq (fun sType), sFunction
|
||
|
(fun sBehavior) value2, mem3, kont
|
||
|
else
|
||
|
throw new LispInterpreterError "Not a function #{(car value2)}"
|
||
|
|
||
|
# Creates a memory address for the function, then creates a new memory
|
||
|
# address for each argument, then evaluates the expressions in the
|
||
|
# lambda, returning the value of the last one.
|
||
|
|
||
|
evaluateLambda = (names, exprs, env, mem, kont) ->
|
||
|
allocate 1, mem, (addrs, mem2) ->
|
||
|
kont (createFunction (car addrs), (values, mem, kont) ->
|
||
|
if eq (length names), (length values)
|
||
|
allocate (length names), mem, (addrs, mem2) ->
|
||
|
evaluateBegin exprs, (updates env, names, addrs), (updates mem2, addrs, values), kont
|
||
|
else
|
||
|
throw new LispInterpreterError "Incorrect Arrity"), mem2
|
||
|
|
||
|
evaluateIf = (expc, expt, expf, env, mem, kont) ->
|
||
|
evaluate expc, env, mem, (env, mems) ->
|
||
|
evaluate ((env sBoolify) expt, expf), env, mems, kont
|
||
|
|
||
|
evaluateQuote = (c, env, mem, kont) ->
|
||
|
transcode2 (normalizeForm c), mem, kont
|
||
|
|
||
|
# By starting over "from here," we undo all side-effect assignments
|
||
|
# that were effected by expression 1
|
||
|
|
||
|
evaluateOr = (exp1, exp2, env, mem, kont) ->
|
||
|
evaluate exp1, env, mem, (value, mem2) ->
|
||
|
((value sBoolify) (-> kont value, mem2), (-> evaluate exp2, env, mem, kont))()
|
||
|
|
||
|
# I like how, in this version, we explicitly throw away the meaning of
|
||
|
# all but the last statement in evaluateBegin.
|
||
|
evaluateBegin = (exps, env, mem, kont) ->
|
||
|
if pairp (cdr exps)
|
||
|
evaluate (car exps), env, mem, (_, mems) ->
|
||
|
evaluateBegin (cdr exps), env, mems, kont
|
||
|
else
|
||
|
evaluate (car exps), env, mem, kont
|
||
|
|
||
|
theEmptyList = (msg) ->
|
||
|
switch msg
|
||
|
when sType then sNull
|
||
|
when sBoolify then (x, y) -> x
|
||
|
|
||
|
createBoolean = (value) ->
|
||
|
combinator = if value then ((x, y) -> x) else ((x, y) -> y)
|
||
|
(msg) ->
|
||
|
switch msg
|
||
|
when sType then sBoolean
|
||
|
when sBoolify then combinator
|
||
|
|
||
|
createSymbol = (value) ->
|
||
|
(msg) ->
|
||
|
switch msg
|
||
|
when sType then sSymbol
|
||
|
when sName then value
|
||
|
when sBoolify then (x, y) -> x
|
||
|
|
||
|
createNumber = (value) ->
|
||
|
(msg) ->
|
||
|
switch msg
|
||
|
when sType then sNumber
|
||
|
when sValue then value
|
||
|
when sBoolify then (x, y) -> x
|
||
|
|
||
|
createString = (value) ->
|
||
|
(msg) ->
|
||
|
switch msg
|
||
|
when sType then sString
|
||
|
when sValue then value
|
||
|
when sBoolify then (x, y) -> x
|
||
|
|
||
|
createFunction = (tag, behavior) ->
|
||
|
(msg) ->
|
||
|
switch msg
|
||
|
when sType then sFunction
|
||
|
when sBoolify then (x, y) -> x
|
||
|
when sTag then tag
|
||
|
when sBehavior then behavior
|
||
|
|
||
|
# I'm not sure I get the difference between allocate and update.
|
||
|
# Update appears to have the power to append to the memory list
|
||
|
# without updating highLocation. If I'm reading this correct, then
|
||
|
# what we're actually looking at is a simulation of a memory
|
||
|
# subsystem, with expandStore/newLocation/allocate taking on the duty
|
||
|
# of "managing" our stack, and update actually just doing the managing
|
||
|
# the stack, and letting the garbage collector do its thing when a
|
||
|
# pointer to memory function goes out of scope. In short: the
|
||
|
# allocate collection of functions is "going through the motions" of
|
||
|
# managing memory; had this been a real memory manager, you'd have
|
||
|
# a lot more work to do.
|
||
|
|
||
|
allocate = (num, mem, q) ->
|
||
|
if (num > 0)
|
||
|
do ->
|
||
|
addr = newLocation mem
|
||
|
allocate (num - 1), (expandStore addr, mem), (addrs, mem2) ->
|
||
|
q (cons addr, addrs), mem2
|
||
|
else
|
||
|
q cons(), mem
|
||
|
|
||
|
allocateList = (values, mem, q) ->
|
||
|
consify = (values, q) ->
|
||
|
if (pairp values)
|
||
|
consify (cdr values), (value, mem2) ->
|
||
|
allocatePair (car values), value, mem2, q
|
||
|
else
|
||
|
q theEmptyList, mem
|
||
|
consify values, q
|
||
|
|
||
|
allocatePair = (addr, d, mem, q) ->
|
||
|
allocate 2, mem, (addrs, mem2) ->
|
||
|
q (createPair (car addrs), (cadr addrs)), (update (update mem2, (car addrs), addr), (cadr addrs), d)
|
||
|
|
||
|
createPair = (a, d) ->
|
||
|
(msg) ->
|
||
|
switch msg
|
||
|
when sType then sPair
|
||
|
when sBoolify then (x, y) -> x
|
||
|
when sSetCar then (mem, val) -> update mem, a, val
|
||
|
when sSetCdr then (mem, val) -> update mem, d, val
|
||
|
when sCar then a
|
||
|
when sCdr then d
|
||
|
|
||
|
env_global = env_init
|
||
|
mem_global = mem_init
|
||
|
|
||
|
# The name is pushed onto the global environment, with a corresponding
|
||
|
# address. The address is pushed onto the current memory, with the
|
||
|
# corresponding boxed value.
|
||
|
|
||
|
defInitial = (name, value) ->
|
||
|
if typeof name == 'string'
|
||
|
name = new Symbol name
|
||
|
allocate 1, mem_global, (addrs, mem2) ->
|
||
|
env_global = update env_global, name, (car addrs)
|
||
|
mem_global = update mem2, (car addrs), value
|
||
|
|
||
|
defPrimitive = (name, arity, value) ->
|
||
|
defInitial name, allocate 1, mem_global, (addrs, mem2) ->
|
||
|
mem_global = expandStore (car addrs), mem2
|
||
|
createFunction (car addrs), (values, mem, kont) ->
|
||
|
if (eq arity, (length values))
|
||
|
value values, mem, kont
|
||
|
else
|
||
|
throw new LispInterpreterError "Wrong arity for #{name}"
|
||
|
|
||
|
# ___ _ _ _ _ _ _ _
|
||
|
# |_ _|_ _ (_) |_(_) (_)_____ _| |_(_)___ _ _
|
||
|
# | || ' \| | _| | | |_ / _` | _| / _ \ ' \
|
||
|
# |___|_||_|_|\__|_|_|_/__\__,_|\__|_\___/_||_|
|
||
|
#
|
||
|
|
||
|
|
||
|
defInitial "#t", createBoolean true
|
||
|
defInitial "#f", createBoolean false
|
||
|
defInitial "nil", null
|
||
|
|
||
|
defPrimitive "<=", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createBoolean (((car values) sValue) <= ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Comparison requires numbers"
|
||
|
|
||
|
defPrimitive "<", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createBoolean (((car values) sValue) < ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Comparison requires numbers"
|
||
|
|
||
|
defPrimitive ">=", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createBoolean (((car values) sValue) >= ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Comparison requires numbers"
|
||
|
|
||
|
defPrimitive ">", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createBoolean (((car values) sValue) > ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Comparison requires numbers"
|
||
|
|
||
|
defPrimitive "=", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sType), sNumber)
|
||
|
kont (createBoolean (((car values) sValue) == ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Comparison requires numbers"
|
||
|
|
||
|
defPrimitive "*", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createNumber (((car values) sValue) * ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Multiplication requires numbers"
|
||
|
|
||
|
defPrimitive "+", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sType), sNumber)
|
||
|
kont (createNumber (((car values) sValue) + ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Addition requires numbers"
|
||
|
|
||
|
defPrimitive "/", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createNumber (((car values) sValue) / ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Division requires numbers"
|
||
|
|
||
|
defPrimitive "*", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType), sNumber) and (eq ((cadr values) sName), sNumber)
|
||
|
kont (createNumber (((car values) sValue) - ((cadr values) sValue))), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Subtraction requires numbers"
|
||
|
|
||
|
defPrimitive "cons", 2, (values, mem, kont) ->
|
||
|
allocatePair (car values), (cadr values), mem, kont
|
||
|
|
||
|
defPrimitive "car", 1, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType) sPair)
|
||
|
kont (mem ((car values) sCar)), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Not a pair"
|
||
|
|
||
|
defPrimitive "cdr", 1, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType) sPair)
|
||
|
kont (mem ((car values) sCdr)), mem
|
||
|
else
|
||
|
throw new LispInterpreterError "Not a pair"
|
||
|
|
||
|
defPrimitive "setcdr", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType) sPair)
|
||
|
pair = (car values)
|
||
|
kont pair, ((pair sSetCdr) mem, (cadr values))
|
||
|
else
|
||
|
throw new LispInterpreterError "Not a pair"
|
||
|
|
||
|
defPrimitive "setcar", 2, (values, mem, kont) ->
|
||
|
if (eq ((car values) sType) sPair)
|
||
|
pair = (car values)
|
||
|
kont pair, ((pair sSetCar) mem, (cadr values))
|
||
|
else
|
||
|
throw new LispInterpreterError "Not a pair"
|
||
|
|
||
|
defPrimitive "eq?", 2, (values, mem, kont) ->
|
||
|
kont createBoolean (
|
||
|
if (eq ((car values) sType), ((cadr values) sType))
|
||
|
switch ((car values) sType)
|
||
|
when sBoolean
|
||
|
((car values) sBoolify) (((cadr values) sBoolify) true, false), (((cadr values) sBoolify) false, true)
|
||
|
when sSymbol
|
||
|
eq ((car values) sName), ((cadr values) sName)
|
||
|
when sPair
|
||
|
(((car values) sCar) == ((cadr values) sCar) and
|
||
|
((car values) sCdr) == ((cadr values) sCdr))
|
||
|
when sFunction
|
||
|
((car values) sTag) == ((cadr values) sTag)
|
||
|
else false
|
||
|
else false)
|
||
|
|
||
|
defPrimitive "eqv?", 2, (values, mem, kont) ->
|
||
|
kont createBoolean (
|
||
|
if (eq ((car values) sType), ((cadr values) sType))
|
||
|
switch ((car values) sType)
|
||
|
when sBoolean
|
||
|
((car values) sBoolify) (((cadr values) sBoolify) true, false), (((cadr values) sBoolify) false, true)
|
||
|
when sSymbol
|
||
|
eq ((car values) sName), ((cadr values) sName)
|
||
|
when sNumber
|
||
|
((car values) sValue) == ((cadr values) sValue)
|
||
|
when sPair
|
||
|
(((car values) sCar) == ((cadr values) sCar) and
|
||
|
((car values) sCdr) == ((cadr values) sCdr))
|
||
|
when sFunction
|
||
|
((car values) sTag) == ((cadr values) sTag)
|
||
|
else false
|
||
|
else false)
|
||
|
|
||
|
module.exports = (ast, kont) ->
|
||
|
evaluate ast, env_global, mem_global, (value, mem) ->
|
||
|
kont (transcodeBack value, mem)
|