LispInSmallPieces/chapter3/interpreter.coffee

314 lines
9.9 KiB
CoffeeScript

{listToString, listToVector, pairp, cons, car, cdr, caar, cddr, cdar, cadr, caadr, cadar, caddr, nilp, nil, setcdr, metacadr, setcar} = require "cons-lists/lists"
readline = require "readline"
{inspect} = require "util"
ntype = (node) -> car node
nvalu = (node) -> cadr node
the_false_value = (cons "false", "boolean")
class Value
# Represents the base class of a continuation. Calls to invoke resume
# the contained continuation, which is typecast to one of the specific
# continuation needs of conditional, sequence, etc...
class Continuation
constructor: (@k) ->
invoke: (v, env, kont) ->
if nilp cdr v
@k.resume (car v)
else
throw "Continuations expect one argument"
# Abstract class representing the environment
class Environment
lookup: -> throw "Nonspecific invocation"
update: -> throw "Nonspecific invocation"
# Base of the environment stack. If you hit this, your variable was
# never found for lookup/update. Note that at this time in the
# class, you have not
class NullEnv extends Environment
lookup: (e) -> throw "Unknown variable #{e}"
update: (e) -> throw "Unknown variable #{e}"
# This appears to be an easy and vaguely abstract handle to the
# environment. The book is not clear on the distinction between the
# FullEnv and the VariableEnv.
class FullEnv extends Environment
constructor: (@others, @name) ->
@_type = "FullEnv"
lookup: (name, kont) ->
@others.lookup name, kont
update: (name, kont, value) ->
@others.update name, kont, value
# This is the classic environment pair; either it's *this*
# environment, or it's a parent environment, until you hit the
# NullEnv. Once the name has been found, the continuation is called
# with the found value.
class VariableEnv extends FullEnv
constructor: (@others, @name, @value) ->
@_type = "VariableEnv"
lookup: (name, kont) ->
if name == @name
kont.resume @value
else
@others.lookup name, kont
update: (name, kont, value) ->
if name == @name
@value = value
kont.resume value
else
@others.update name, kont, value
# "Renders the quote term to the current continuation"; in a more
# familiar parlance, calls resume in the current context with the
# quoted term uninterpreted.
evaluateQuote = (v, env, kont) ->
kont.resume v
# Evaluates the conditional expression, creating a continuation with
# the current environment that, when resumed, evaluates either the
# true or false branch, again in the current enviornment.
evaluateIf = (exps, env, kont) ->
evaluate (car exps), env, new IfCont(kont, (cadr exps), (caddr exps), env)
class IfCont extends Continuation
constructor: (@k, @ift, @iff, @env) ->
@_type = "IfCont"
resume: (value) ->
evaluate (if value == the_false_value then @iff else @ift), @env, @k
# Sequences: evaluates the current expression with a continuation that
# represents "the next expression" in the sequence. Upon resumption,
# calls this function with that next expression.
evaluateBegin = (exps, env, kont) ->
if (pairp exps)
if pairp (cdr exps)
evaluate (car exps), env, (new BeginCont kont, exps, env)
else
evaluate (car exps), env, kont
else
kont.resume("Begin empty value")
class BeginCont extends Continuation
constructor: (@k, @exps, @env) ->
@_type = "BeginCont"
resume: (v) -> evaluateBegin (cdr @exps), @env, @k
# In this continuation, we simply pass the continuation and the name
# to the environment to look up. The environment knows to call the
# continuation with the value.
evaluateVariable = (name, env, kont) ->
env.lookup(name, kont)
# This is the same dance as lookup, only with the continuation being
# called after an update has been performed.
evaluateSet = (name, exp, env, kont) ->
evaluate exp, env, (new SetCont(kont, name, env))
class SetCont extends Continuation
constructor: (@k, @name, @env) ->
@_type = "SetCont"
resume: (value) ->
@env.update @name, @k, value
# Calls the current contunation, passing it a new function wrapper.
evaluateLambda = (names, exp, env, kont) ->
kont.resume new Function names, exp, env
# Upon invocation, evaluates the body with a new environment that
# consists of the original names, their current values as called, and
# the continuation an the moment of invocation, which will continue
# (resume) execution once the function is finished.
#
# By the way: this is pretty much the whole the point.
class Function extends Value
constructor: (@variables, @body, @env) ->
@_type = "Function"
invoke: (values, env, kont) ->
evaluateBegin @body, (extend @env, @variables, values), kont
# Helper function to build name/value pairs for the current execution
# context.
extend = (env, names, values) ->
if (pairp names) and (pairp values)
new VariableEnv (extend env, (cdr names), (cdr values)), (car names), (car values)
else if (nilp names)
if (nilp values) then env else throw "Arity mismatch"
else
new VariableEnv env, names, values
# Now we start the invocation: this is applying the function. Let's
# take it stepwise.
# Create a function environment. Calls the evaluateArguments(), which
# in turns goes down the list of arguments and creates a new
# environment, and then the continuation is to actually appy the nev
# environment to the existing function.
evaluateApplication = (exp, exps, env, kont) ->
evaluate exp, env, (new EvFunCont kont, exps, env)
class EvFunCont extends Continuation
constructor: (@k, @exp, @env) ->
@_type = "EvFunCont"
resume: (f) ->
evaluateArguments @exp, @env, (new ApplyCont(@k, f, @env))
# Evaluate the first list, creating a new list of the arguments. Upon
# completion, resume the continuation with the gather phase
evaluateArguments = (exp, env, kont) ->
if (pairp exp)
evaluate (car exp), env, (new ArgumentCont kont, exp, env)
else
kont.resume(nil)
class ArgumentCont extends Continuation
constructor: (@k, @exp, @env) ->
@_type = "ArgumentCont"
resume: (v) ->
evaluateArguments (cdr @exp), @env, (new GatherCont @k, v)
# Gather the arguments as each ArgumentCont is resumed into a list to
# be passed to our next step.
class GatherCont extends Continuation
constructor: (@k, @v) ->
@_type = "GatherCont"
resume: (v) ->
@k.resume (cons @v, v)
# Upon resumption, invoke the function.
class ApplyCont extends Continuation
constructor: (@k, @fn, @env) ->
@_type = "ApplyCont"
resume: (v) ->
console.log
@fn.invoke v, @env, @k
# A special continuation that represents what we want the interpreter
# to do when it's done processing.
class BottomCont extends Continuation
constructor: (@k, @f) ->
@_type = "BottomCont"
resume: (v) ->
@f(v)
class Primitive extends Value
constructor: (@name, @nativ) ->
@_type = "Primitive"
invoke: (args, env, kont) ->
@nativ.apply null, [args, env, kont]
astSymbolsToLispSymbols = (node) ->
return nil if nilp node
throw "Not a list of variable names" if not (ntype(node) is 'list')
handler = (node) ->
return nil if nilp node
cons (nvalu car node), (handler cdr node)
handler(nvalu node)
evaluate = (e, env, kont) ->
[type, exp] = [(ntype e), (nvalu e)]
if type == "symbol"
return evaluateVariable exp, env, kont
if type in ["number", "string", "boolean", "vector"]
return kont.resume exp
if type == "list"
head = car exp
if (ntype head) == 'symbol'
switch (nvalu head)
when "quote" then evaluateQuote (cdr exp), env, kont
when "if" then evaluateIf (cdr exp), env, kont
when "begin" then evaluateBegin (cdr exp), env, kont
when "set!" then evaluateSet (nvalu cadr exp), (caddr exp), env, kont
when "lambda" then evaluateLambda (astSymbolsToLispSymbols cadr exp), (cddr exp), env, kont
else evaluateApplication (car exp), (cdr exp), env, kont
else
evaluateApplication (car exp), (cdr exp), env, kont
else
throw new Error("Can't handle a '#{type}'")
env_init = new NullEnv()
definitial = (name, value = nil) ->
env_init = new VariableEnv env_init, name, value
name
defprimitive = (name, nativ, arity) ->
definitial name, new Primitive name, (args, env, kont) ->
vmargs = listToVector(args)
if (vmargs.length == arity)
kont.resume (nativ.apply null, vmargs)
else
throw "Incorrect arity"
defpredicate = (name, nativ, arity) ->
defprimitive name, ((a, b) -> if nativ.call(null, a, b) then true else the_false_value), arity
definitial "#t", true
definitial "#f", the_false_value
definitial "nil", nil
for i in [
"x", "y", "z", "a", "b", "c", "foo", "bar", "hux",
"fib", "fact", "visit", "primes", "length"]
definitial i
defprimitive "cons", cons, 2
defprimitive "car", car, 2
defprimitive "cdr", cdr, 2
defprimitive "set-cdr!", setcdr, 2
defprimitive "set-car!", setcar, 2
defprimitive "+", ((a, b) -> a + b), 2
defprimitive "*", ((a, b) -> a * b), 2
defprimitive "-", ((a, b) -> a - b), 2
defprimitive "/", ((a, b) -> a / b), 2
defpredicate "lt", ((a, b) -> a < b), 2
defpredicate "gt", ((a, b) -> a > b), 2
defpredicate "lte", ((a, b) -> a <= b), 2
defpredicate "gte", ((a, b) -> a >= b), 2
defpredicate "eq?", ((a, b) -> a == b), 2
defpredicate "pair?", ((a) -> pairp a), 1
defpredicate "nil?", ((a) -> nilp a), 1
defpredicate "symbol?", ((a) -> /\-?[0-9]+$/.test(a) == false), 1
definitial "call/cc", new Primitive "call/cc", (values, env, kont) ->
if nilp cdr values
(car values).invoke (cons kont), env, kont
else
throw ["Incorrect arity for call/cc", [r, k]]
definitial "apply", new Primitive "apply", (values, env, kont) ->
if pairp cdr values
f = car values
args = (() ->
(flat = (args) ->
if nilp (cdr args) then (car args) else (cons (car args), (flat cdr args)))(cdr values))()
f.invoke args, env, kont
definitial "list", new Primitive "list", (values, env, kont) ->
(values, env, kont) -> kont.resume(values)
interpreter = (ast, kont) ->
evaluate ast, env_init, new BottomCont null, kont
module.exports = interpreter