
1 Introduction

This is version 3.0 of TheBackboneStore, a brief tutorial onusing backbone.js.
The version you are currently reading has been tested with the latest versions
of the supporting software as of April, 2016.

Backbone.js1 is a popular Model-View-Controller (MVC) library that pro-
vides a framework for creating data-rich, single-page web applications. It pro-
vides (1) a two-layer scheme for separating data from presentation, (2) a means
of automatically synchronizing data with a server in a RESTful manner, and (3)
a mechanism for making some views bookmarkable and navigable.

There are a number of other good tutorials for Backbone (See: Meta Cloud2,
&Yet's Tutorial3, Backbone Mobile4 (which is written in Coffee5), and Back-
bone and Django6. However, a couple of months ago I was attempting to learn
Sammy.js, a library very similar to Backbone, and they had a nifty tutorial called
The JsonStore7.

In the spirit of The JSON Store, I present The Backbone Store.

1.1 Literate Program

Anote: this article was writtenwith the Literate Programming8 toolkit Noweb9.
Where you see something that looks like ⟨⟨this⟩⟩, it's a placeholder for code de-
scribed elsewhere in the document. Placeholders with an equal sign at the end
of them indicate the place where that code is defined. The link (U->) indicates
that the code you're seeing is used later in the document, and (<-U) indicates it
was used earlier but is being defined here.

1.2 Revision

This is version 3.0 of The Backbone Store. It includes several significant up-
dates, including the use of both NPM and Bower to build the final application.

1.3 The Store: What We're Going to Build

To demonstrate the basics of Backbone, I'm going to create a simple one-page
application, a store for record albums, with two unique views: a list of all prod-
ucts and a product detail view. I will also put a shopping cart widget on the page
that shows the user howmany products he or she has dropped into the cart. I'll

1See URL http://documentcloud.github.com/backbone/.
2See URL http://www.plexical.com/blog/2010/11/18/backbone-js-tutorial/.
3SeeURL http://andyet.net/blog/2010/oct/29/building-a-single-page-app-with-backbonejs-undersc/?utm_source=twitterfeed&utm_medium=twitter.
4See URL http://bennolan.com/2010/11/24/backbone-jquery-demo.html.
5See URL http://jashkenas.github.com/coffee-script/.
6See URL http://joshbohde.com/2010/11/25/backbonejs-and-django/.
7See URL http://code.quirkey.com/sammy/tutorials/json_store_part1.html.
8See URL http://en.wikipedia.org/wiki/Literate_programming.
9See URL http://www.cs.tufts.edu/~nr/noweb/.

1



use some simple animations to transition between the catalog and the product
detail pages.

1.4 Models, Collections, and Controllers

Backbone's data layer provides two classes, Collection and Model.
Every web application has data, often tabular data. Full-stack web devel-

opers are (or ought to be) familiar with the triples of addressing objects on the
web: Table URL�Row� Field, or Page URL�HTMLNode� Content. The
Collection object represents just that: a collection of similar items. The Model
represents exactly one of those items.

To use theModel, you inherit from it using Backbone's own .extend() class
method, adding or replacing methods in the child object as needed. For our
purposes, we have two models: Product represents something we wish to sell,
and Item represents something currently in the customer's shopping cart.

The Product literally has nothing to modify.
Shopping carts are a little odd; the convention is that Item is not a single

instance of the product, but instead has a reference to the product, and a count
of howmany the buyerwants. To that end, I amadding twomethods that extend
Item: .update(), which changes the current quantity, and .price(), which
calculates the product's price times the quantity:

2 ⟨models 2⟩≡ (18)

var Product = Backbone.Model.extend({});

var Item = Backbone.Model.extend({
update: function(amount) {

if (amount === this.get('quantity')) {
return this;

}
this.set({quantity: amount}, {silent: true});
this.collection.trigger('update', this);
return this;

},

price: function() {
return this.get('product').get('price') * this.get('quantity');

}
});

2



The methods .get(item) and .set(item, value) are at the heart of Back-
bone.Model. They're how you set individual attributes on the object being ma-
nipulated. Notice how I can 'get' the product, which is a Backbone.Model, and
then 'get' its price.

Backbone supplies its own event management toolkit. Changing a model
triggers various events, none of which matter here in this context so I silence
the event, but then I tell the Item's Backbone.Collection that the Model has
changed. For this program, it is the collection as a whole whose value matters,
because that collection as a whole represents our shopping cart. Events are the
primary way in which Backbone objects interact, so understanding them is key
to using Backbone correctly.

Collections, like Models, are just objects you can (and often must) extend
to support your application's needs. Just as a Model has .get() and .set(), a
Collection has .add(item) and .remove(id) as methods. Collections have a lot
more than that.

Both Models and Collections also have .fetch() and .save(). If either has
a URL, these methods allow the collection to represent data on the server, and
to save that data back to the server. The default method is a simple JSON ob-
ject representing either a Model's attributes, or a JSON list of the Collection's
models' attributes.

The Product.Collectionwill be loading its list of albums via thesemethods
to (in our case) static JSON back-end.

3 ⟨product collection 3⟩≡ (18)

var ProductCollection = Backbone.Collection.extend({
model: Product,
initialize: function(models, options) {

this.url = options.url;
},

comparator: function(item) {
return item.get('title');

}
});

3



The .model attribute tells the ProductCollection that if .add()or .fetch()
are called and the contents are plain JSON, a new Product Model should be
initialized with the JSON data and that will be used as a new object for the Col-
lection.

The .comparator()method specifies the per-model value by which the Col-
lection should be sorted. Sorting happens automatically whenever the Collec-
tion receives an event indicating its contents have been altered.

The ItemCollection doesn't have a URL, but we do have several helper
methods to add. We don't want to add Items; instead, we want to add prod-
ucts as needed, then update the count as requested. If the product is already in
our system, we don't want to create duplicates.

First, we ensure that if we don't receive an amount, we at least provide a
valid numerical value to our code. The .detect()method lets us find an object
in our Collection using a function to compare them; it returns the first object
that matches.

If we find the object, we update it and return. If we don't, we create a new
one, exploiting the fact that, since we specified the Collection's Model above, it
will automatically be created as a Model in the Collection at the end of this call.
In either case, we return the new Item to be handled further by the calling code.

4 ⟨cart collection 4⟩≡ (18) 5 ▷

var ItemCollection = Backbone.Collection.extend({
model: Item,

updateItemForProduct: function(product, amount) {
amount = amount != null ? amount : 0;
var pid = product.get('id');
var item = this.detect(function(obj) {

return obj.get('product').get('id') === pid;
});
if (item) {

item.update(amount);
return item;

}
return this.add({

product: product,
quantity: amount

});
},

4



And finally, two methods to add up how many objects are in your cart, and
the total price. The first line creates a function to get the number for a single
object and add it to amemo. The second line uses the .reduce()method, which
goes through each object in the collection and runs the function, passing the
results of each run to the next as the memo.

5 ⟨cart collection 4⟩+≡ (18) ◁ 4

getTotalCount: function() {
var addup = function(memo, obj) {

return memo + obj.get('quantity');
};
return this.reduce(addup, 0);

},

getTotalCost: function() {
var addup = function(memo, obj) {

return memo + obj.price();
};
return this.reduce(addup, 0);

}
});

5



1.5 Views

Backbone Views are simple policy objects. They have a root DOM element, the
contents of which they manipulate and to which they listen for events, and a
model or collection they represent within that element. Views are not rigid; it's
just Javascript and the DOM, and you can hook external events as needed.

More importantly, if you pass a model or collection to a View, that View
becomes sensitive to events within its model or collection, and can respond
to changes automatically. This way, if you have a rich data ecosystem, when
changes to onedata item results in a cascade of changes throughout your datasets,
the views will receive ``change'' events and can update themselves accordingly.

In away, aView canbe thought of as two separate but important sub-programs,
each based on events. The first listens to events from the DOM, and forwards
data-changing events to associated models or collections. The second listens
to events from data objects and re-draws the View's contents when the data
changes. Keeping these separate in your mind will help you design Backbone
applications successfully.

I will show how this works with the shopping cart widget.
To achieve the fadeIn/fadeOut animations and enforce consistency, I'm go-

ing to do some basic object-oriented programming. I'm going to create a base
class that contains knowledge about the main area into which all views are ren-
dered, and that manages these transitions.

With this technique, you can do lots of navigation-related tricks: you can
highlight where the user is in breadcrumb-style navigation; you can change the
class and highlight an entry on a nav bar; you can add and remove tabs from
the top of the viewport as needed.

6 ⟨base view 6⟩≡ (18) 7 ▷

var BaseView = Backbone.View.extend({
parent: $('#main'),
className: 'viewport',

initialize: function(options) {
Backbone.View.prototype.initialize.apply(this, arguments);
this.$el.hide();
this.parent.append(this.el);

},

6



The above says that I am creating a class called BaseView and defining two
fields. The first, 'parent', will be used by all child views to identify into which
DOM object the View root element will be rendered. The second defines a com-
mon class wewill use for the purpose of identifying these views to jQuery. Back-
bone automatically creates a new DIV object with the class 'viewport' when a
view constructor is called. It will be our job to attach that DIV to the DOM.
In the HTML, you will see the DIV#main object where most of the work will be
rendered.

As an alternative, the viewport object may already exist, in which case you
just find it with a selector, and the view attaches itself to that DOM object from
then on. In older versions of the Backbone Store, we used to assign this.el to a
jQuery-wrapped version of the element; that's no longer necessary, as Backbone
provides you with its own version automatically in this.$el.

The 'parent' field is something I created for my own use, since I intend to
havemultiple child objects share the same piece of real-estate. The 'className'
field is something Backbone automatically applies to the generated DIV at con-
struction time. If you pass in an existing element at construction time for the
View to use (which is not an uncommon use case!), Backbone will not apply the
'className' to it; you'll have to do that yourself.

I use the initializemethod above to ensure that the element is rendered,
but not visible, and contained within the DIV#main. Note also that the element
is not a sacrosanct object; the Backbone.View is more a collection of standards
than a mechanism of enforcement, and so defining it from a raw DOM object
or a jQuery object will not break anything.

Next, we will define the hide and show functions.

7 ⟨base view 6⟩+≡ (18) ◁ 6

hide: function() {
var dfd = $.Deferred();
if (!this.$el.is(':visible')) {

return dfd.resolve();
}
this.$el.fadeOut('fast', function() {

return dfd.resolve();
});
return dfd.promise();

},

show: function() {
var dfd = $.Deferred();
if (this.$el.is(':visible')) {

return dfd.resolve();
}
this.$el.fadeIn('fast', function() {

return dfd.resolve();
});

7



return dfd.promise();
}

});

Deferred is a feature of jQuery called ``promises''. It is a different mech-
anism for invoking callbacks by attaching attributes and behavior to the call-
back function. By using this, we can say thing like ``When everything is hidden
(when every deferred returned from hide has been resolved), then show the
appropriate viewport.'' Deferreds are incredibly powerful, and this is a small
taste of what can be done with them.

Before we move on, let's take a look at the HTML we're going to use for our
one-page application.

8 ⟨index.html 8⟩≡
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>The Backbone Store</title>
<link charset="utf-8" href="jsonstore.css" rel="stylesheet" type="text/css">
⟨product list template 10⟩
⟨product detail template 13a⟩
⟨cart template 14c⟩
</head>

</head>
<body>
<div id="container">
<div id="header">
<h1>
The Backbone Store

</h1>
<div class="cart-info"></div>

</div>
<div id="main"></div>

</div>
<script src="lib/jquery.js" type="text/javascript"></script>
<script src="lib/underscore.js" type="text/javascript"></script>
<script src="lib/backbone.js" type="text/javascript"></script>
<script src="store.js" type="text/javascript"></script>

</body>
</html>

8



It's not much to look at, but already you can see where that DIV\#main goes,
as well as where we are putting our templates. The DIV\#main will host a num-
ber of viewports, only one of which will be visible at any given time.

Our first view is going to be the product list view, named, well, guess. Or
just look down a few lines.

This gives us a chance to discuss one of the big confusions new Backbone
users frequently have: What is render() for?. Render is not there to show or
hide the view. Render() is there to change the view when the underlying data
changes. It renders the data into a view. In our functionality, we use the parent
class's show() and hide()methods to actually show the view.

That call to .prototype is a Javascript idiom for calling a method on the
parent object. It is, as far as anyone knows, the only way to invoke a superclass
method if it has been redefined in a subclass. It is rather ugly, but useful.

9 ⟨product list view 9⟩≡ (18)

var ProductListView = BaseView.extend({
id: 'productlistview',
template: _.template($("#store_index_template").html()),

initialize: function(options) {
BaseView.prototype.initialize.apply(this, arguments);
this.collection.bind('reset', this.render.bind(this));

},

render: function() {
this.$el.html(this.template({

'products': this.collection.toJSON()
}));
return this;

}
});

9



That _.template()method is providedbyundescore.js, and is a full-featured,
javascript-based templating method. It's not the fastest or the most feature-
complete, but it is more than adequate for our purposes and it means we don't
have to import another library. It vaguely resembles ERB from Rails, so if you
are familiar with that, you should understand this fairly easily. It takes a tem-
plate and returns a function ready to render the template. What we're saying
here is that we want this View to automatically re-render itself every time the
given collection changes in a significant way, using the given template, into the
given element. That's what this view ``means.''

There are many different ways of providing templates to Backbone. The
most common, especially for small templates, is to just include it as an inline
string inside the View. The least common, I'm afraid, is the one I'm doing here:
using the <script> tag with an unusual mime type to include it with the rest of
the HTML. I like this method because it means all of my HTML is in one place.

For much larger programs, those that use features such as Require.js10, a
common technique is to keep the HTML template fragment in its own file and
to import it using Require's ``text'' plugin.

Here is the HTML for our home page's template:

10 ⟨product list template 10⟩≡ (8)

<script id="store_index_template" type="text/x-underscore-tmplate">
<h1>Product Catalog</h1>
<ul>
<% for(i=0,l=products.length;i<l;++i) { p = products[i]; %>
<li class="item">
<div class="item-image">
<a href="#item/<%= p.id %>">
<img alt="<%= p.title %>" src="<%= p.image %>">

</a>
</div>
<div class="item-artist"><%= p.artist %></div>
<div class="item-title"><%= p.title %></div>
<div class="item-price">$<%= p.price %></div>

</li>
<% } %>

</ul>
</script>

10See URL http://requirejs.org/.

10



One of the most complicated objects in our ecosystem is the product view.
It actually does something! The prefix ought to be familiar, but note that we are
again using \#main as our target; we will be showing and hiding the various DIV
objects in \#main again and again.

The only trickiness here is twofold: themeans bywhich one calls themethod
of a parent class from a child class via Backbone's class heirarchy, and keeping
track of the ItemCollection object, so we can add and change items as needed.

11a ⟨product detail view 11a⟩≡ (18) 11b ▷

var ProductView = BaseView.extend({
className: 'productitemview',
template: _.template($("#store_item_template").html()),

initialize: function(options) {
BaseView.prototype.initialize.apply(this, [options]);
this.itemcollection = options.itemcollection;

},

There are certain events in which we're interested: keypresses and clicks
on the update button and the quantity form. (Okay, ``UQ'' isn't the best for
``update quantity''. I admit that.) Note the peculiar syntax of ``EVENT SE-
LECTOR'': ``methodByName'' for each event.

Backbone tells us that the only events it can track by itself are those that
jQuery's ``delegate'' understands. As of 1.5, that seems to be just about all of
them.

11b ⟨product detail view 11a⟩+≡ (18) ◁ 11a 12a ▷

events: {
"keypress .uqf" : "updateOnEnter",
"click .uq" : "update"

},

11



And now we will deal with the update. This code ought to be fairly readable:
the only specialness is that it's receiving an event, and we're ``silencing'' the
call to cart.add(), which means that the cart collection will not publish any
events. There are only events when the item has more than zero, and that gets
called on cart_item.update().

In the original tutorial, this code had a lot of responsibility for managing
the shopping cart, looking into it and seeing if it had an item for this product,
and there was lots of accessing the model to get its id and so forth. All of that
has been put into the shopping cart model, which is where it belongs: knowl-
edge about items and each item's relationship to its collection belongs in the
collection.

Look closely at the update() method. The reference this.$ is a special
Backbone object that limits selectors to objects inside the element of the view.
Without it, jQuery would have found the first input field of class 'uqf' in the
DOM,not the one for this specific view. this.$('.uqf') is shorthand for $('uqf',
this.el), and helps clarify what it is you're looking for.

12a ⟨product detail view 11a⟩+≡ (18) ◁ 11b 12b ▷

update: function(e) {
e.preventDefault();

return this.itemcollection.updateItemForProduct(this.model, parseInt(this.$('.uqf').val()));
},

updateOnEnter: function(e) {
if (e.keyCode === 13) {

this.update(e);
}

},

The render is straightforward:

12b ⟨product detail view 11a⟩+≡ (18) ◁ 12a

render: function() {
this.$el.html(this.template(this.model.toJSON()));
return this;

}
});

12



Theproduct detail template is fairly straightforward. There is no underscore
magic because there are no loops.

13a ⟨product detail template 13a⟩≡ (8)

<script id="store_item_template" type="text/x-underscore-template">
<div class="item-detail">
<div class="item-image">
<img alt="<%= title %>" src="<%= large_image %>">

</div>
<div class="item-info">
<div class="item-artist"><%= artist %></div>
<div class="item-title"><%= title %></div>
<div class="item-price">$<%= price %></div>
<div class="item-form"></div>
<form action="#/cart" method="post">
<p>
<label>Quantity:</label>
<input class="uqf" name="quantity" size="2" type="text" value="1">

</p>
<p>
<input class="uq" type="submit" value="Add to Cart">

</p>
</form>
<div class="item-link">
<a href="<%= url %>">Buy this item on Amazon</a>

</div>
<div class="back-link">
<a href="#">&laquo; Back to Items</a>

</div>
</div>

</div>
</script>

So, let's talk about that shopping cart thing. We've been making the point
thatwhen it changes, when you call item.updatewithin the product detail view,
any corresponding subscribing views sholud automatically update.

13b ⟨cart widget 13b⟩≡ (18) 14a ▷

var CartWidget = Backbone.View.extend({
el: $('.cart-info'),
template: _.template($('#store_cart_template').html()),

initialize: function() {
Backbone.View.prototype.initialize.apply(this, arguments);
this.collection.bind('update', this.render.bind(this));

},

13



And there is the major magic. CartWidget will be initialized with the Item-
Collection; when there is any change in the collection, thewidgetwill receive the
'change' event, whichwill automatically trigger the call to the widget's render()
method.

The render method will refill that widget's HTML with a re-rendered tem-
plate with the new count and cost, and then wiggle it a little to show that it did
changed:

14a ⟨cart widget 13b⟩+≡ (18) ◁ 13b

render: function() {
var tel = this.$el.html(this.template({

'count': this.collection.getTotalCount(),
'cost': this.collection.getTotalCost()

}));
tel.animate({ paddingTop: '30px' }).animate({ paddingTop: '10px' });
return this;

}
});

You may have noticed that every render ends in return this. There's a
reason for that. Render is supposed to be pure statement: it's not supposed to
calculate anything, nor is it supposed tomutate anything on the Javascript side.
It can and frequently does, but that's beside the point. By returning this, we
can then call something immediately afterward.

For example, let's say you have a pop-up dialog. It starts life hidden. You
need to update the dialog, then show it:

14b ⟨example 14b⟩≡
myDialog.render().show();

Because what render() return is this, this code works as expected. That's
how you do chaining in HTML/Javascript.

Back to our code. The HTML for the Cart widget template is dead simple:

14c ⟨cart template 14c⟩≡ (8)

<script id="store_cart_template" type="text/x-underscore-template">
<p>Items: <%= count %> ($<%= cost %>)</p>

</script>

14



Lastly, there is the Router. In Backbone, the Router is a specialized View for
invoking other views. It listens for one specific event: when the window.location.hash
object, the part of the URL after the hash symbol, changes. When the hash
changes, the Router invokes an event handler. The Router, since its purpose is
to control the major components of the one-page display, is also a good place to
keep all the major components of the sytem. We'll keep track of the Views, the
ProductCollection, and the ItemCollection.

15a ⟨router 15a⟩≡ (18) 15b ▷

var BackboneStore = Backbone.Router.extend({
views: {},
products: null,
cart: null,

There are two events we care about: view the list, and view a detail. They
are routed like this:

15b ⟨router 15a⟩+≡ (18) ◁ 15a 15c ▷

routes: {
"": "index",
"item/:id": "product"

},

Like most Backbone objects, the Router has an initialization feature. I cre-
ate a new, empty shopping cart and corresponding cart widget, which doesn't
render because it's empty. I then create a new ProductCollection and and
corresponding ProductListView. These are all processes that happen immedi-
ately.

What does not happen immediately is the fetch() of data from the back-end
server. For that, I use the jQuery deferred again, because fetch() ultimately
returns the results of sync(), which returns the result of an ajax() call, which
is a deferred.

15c ⟨router 15a⟩+≡ (18) ◁ 15b 16a ▷

initialize: function(data) {
Backbone.Router.prototype.initialize.apply(this, arguments);
this.cart = new ItemCollection();
new CartWidget({ collection: this.cart });
this.products = new ProductCollection([], { url: 'data/items.json' });
this.views = {

'_index': new ProductListView({ collection: this.products })
};
$.when(this.products.fetch({ reset: true })).then(function() {

return window.location.hash = '';
});

},

15



There are two things to route to, but we must also route from. Remember
that our twomajor views, the product list and the product detail, inherited from
\_BaseView, which has the hide() and show()methods. Wewant to hide all the
views, then show the one invoked. First, let's hide every view we know about.
hide() returns either a deferred (if the object is being hidden) or null. The
_.filter() call at the end means that this method returns only an array of
deferreds.

16a ⟨router 15a⟩+≡ (18) ◁ 15c 16b ▷

hideAllViews: function() {
return _.filter(_.map(this.views, function(v) { return v.hide(); }),

function(t) { return t !== null; });
},

Showing the product list view is basically hiding everything, then showing
the index. The function $$.when takes arguments of what to wait for; to make
it take an array of arguments, you use the .apply()method.

16b ⟨router 15a⟩+≡ (18) ◁ 16a 17a ▷

index: function() {
var view = this.views['_index'];
return $.when.apply($, this.hideAllViews()).then(function() {

return view.show();
});

},

16



On the other hand, showing the product detail page is a bit trickier. In order
to avoid re-rendering all the time, I am going to create a view for every product
in which the user shows interest, and keep it around, showing it a second time
if the user wants to see it a second time. Note that the view only needs to be
rendered once, after which we can just hide or show it on request.

Not that we pass it the ItemCollection instance. It uses this to create a new
item,which (if you recall fromourdiscussion of getOrCreateItemForProduct())
is automagically put into the collection as needed. Which means all we need to
do is update this item and the item collection changes, which in turn causes the
CartWidget to update automagically as well.

17a ⟨router 15a⟩+≡ (18) ◁ 16b

product: function(id) {
var view = this.views[id];
if (!view) {

var product = this.products.detect(function(p) {
return p.get('id') === id;

});
view = this.views[id] = new ProductView({

model: product,
itemcollection: this.cart

}).render();
}
return $.when(this.hideAllViews()).then(function() {

return view.show();
});

}
});

Finally, we need to start the program

17b ⟨initialization 17b⟩≡ (18)

$(document).ready(function() {
new BackboneStore();
return Backbone.history.start();

});

17



2 The Program

Here's the entirety of the program. Coffeescript provides its own namespace
wrapper:

18 ⟨store.js 18⟩≡
⟨models 2⟩

⟨product collection 3⟩

⟨cart collection 4⟩

⟨base view 6⟩

⟨product list view 9⟩

⟨product detail view 11a⟩

⟨cart widget 13b⟩

⟨router 15a⟩

⟨initialization 17b⟩
And that's it. Put it all together, and you've got yourself a working Backbone

Store.
This code is available at my github at The Backbone Store11.

11See URL https://github.com/elfsternberg/The-Backbone-Store.

18


	Introduction
	Literate Program
	Revision
	The Store: What We're Going to Build
	Models, Collections, and Controllers
	Views

	The Program

