Compare commits
2 Commits
9a53ecf4c9
...
f5a174710d
Author | SHA1 | Date |
---|---|---|
Elf M. Sternberg | f5a174710d | |
Elf M. Sternberg | 9bd56da62d |
184
src/sat.ts
184
src/sat.ts
|
@ -1,21 +1,21 @@
|
|||
// Copyright (c) 2012 Elf M. Sternberg
|
||||
//
|
||||
//
|
||||
// Much of the code here I would never have understood if it hadn't
|
||||
// been for the patient work of Caleb Helbling
|
||||
// (http://www.propulsionjs.com/), as well as the Wikipedia pages for
|
||||
// the Separating Axis Theorem. It took me a week to wrap my head
|
||||
// around these ideas.
|
||||
//
|
||||
//
|
||||
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
// of this software and associated documentation files (the "Software"), to deal
|
||||
// in the Software without restriction, including without limitation the rights
|
||||
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
// copies of the Software, and to permit persons to whom the Software is
|
||||
// furnished to do so, subject to the following conditions:
|
||||
//
|
||||
//
|
||||
// The above copyright notice and this permission notice shall be included in
|
||||
// all copies or substantial portions of the Software.
|
||||
//
|
||||
//
|
||||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
|
@ -32,112 +32,80 @@ class Vector {
|
|||
this.x = x;
|
||||
this.y = y;
|
||||
}
|
||||
|
||||
add: (v2: Vector) {
|
||||
|
||||
add(v2: Vector) {
|
||||
return new Vector(this.x + v2.x, this.y + v2.y);
|
||||
}
|
||||
|
||||
|
||||
|
||||
add: function (v1, v2) {
|
||||
return {
|
||||
x: v1.x + v2.x,
|
||||
y: v1.y + v2.y,
|
||||
};
|
||||
},
|
||||
scalar: function (v, s) {
|
||||
return {
|
||||
x: v.x * s,
|
||||
y: v.y * s,
|
||||
};
|
||||
},
|
||||
dot: function (v1, v2) {
|
||||
return v1.x * v2.x + v1.y * v2.y;
|
||||
},
|
||||
magnitude2: function (v) {
|
||||
var x, y;
|
||||
x = v.x;
|
||||
y = v.y;
|
||||
return x * x + y * y;
|
||||
},
|
||||
magnitude: function (v) {
|
||||
return Math.sqrt(Math.vector.magnitude2(v));
|
||||
},
|
||||
normalize: function (v) {
|
||||
var mag;
|
||||
mag = Math.vector.magnitude(v);
|
||||
return {
|
||||
x: v.x / mag,
|
||||
y: v.y / mag,
|
||||
};
|
||||
},
|
||||
leftNormal: function (v) {
|
||||
return {
|
||||
x: -v.y,
|
||||
y: v.x,
|
||||
};
|
||||
},
|
||||
};
|
||||
|
||||
this.colliding = function (shape1, shape2) {
|
||||
var axes, axes1, axes2, axis, genAxes, genProjection, j, len, proj1, proj2;
|
||||
genAxes = function (shape) {
|
||||
var axis, i, j, ref, results;
|
||||
if (shape.length < 3) {
|
||||
throw "Cannot handle non-polygons";
|
||||
}
|
||||
axis = function (shape, pi) {
|
||||
var edge, p1, p2;
|
||||
p1 = shape[pi];
|
||||
p2 = shape[pi === shape.length - 1 ? 0 : pi + 1];
|
||||
edge = {
|
||||
x: p1.x - p2.x,
|
||||
y: p1.y - p2.y,
|
||||
};
|
||||
return Math.vector.normalize(Math.vector.leftNormal(edge));
|
||||
};
|
||||
results = [];
|
||||
for (i = j = 0, ref = shape.length; 0 <= ref ? j < ref : j > ref; i = 0 <= ref ? ++j : --j) {
|
||||
results.push(axis(shape, i));
|
||||
}
|
||||
return results;
|
||||
};
|
||||
genProjection = function (shape, axis) {
|
||||
var i, j, max, min, p, ref;
|
||||
min = Math.vector.dot(axis, shape[0]);
|
||||
max = min;
|
||||
for (i = j = 1, ref = shape.length; 1 <= ref ? j < ref : j > ref; i = 1 <= ref ? ++j : --j) {
|
||||
p = Math.vector.dot(axis, shape[i]);
|
||||
if (p < min) {
|
||||
min = p;
|
||||
}
|
||||
if (p > max) {
|
||||
max = p;
|
||||
}
|
||||
}
|
||||
return {
|
||||
min: min,
|
||||
max: max,
|
||||
};
|
||||
};
|
||||
axes1 = genAxes(shape1);
|
||||
axes2 = genAxes(shape2);
|
||||
axes = axes1.concat(axes2);
|
||||
for (j = 0, len = axes.length; j < len; j++) {
|
||||
axis = axes[j];
|
||||
proj1 = genProjection(shape1, axis);
|
||||
proj2 = genProjection(shape2, axis);
|
||||
if (
|
||||
!(
|
||||
(proj1.min >= proj2.min && proj1.min <= proj2.max) ||
|
||||
(proj1.max >= proj2.min && proj1.max <= proj2.max) ||
|
||||
(proj2.min >= proj1.min && proj2.min <= proj1.max) ||
|
||||
(proj2.max >= proj1.min && proj2.max <= proj1.max)
|
||||
)
|
||||
) {
|
||||
return false;
|
||||
}
|
||||
scalar(s: number) {
|
||||
return new Vector(this.x * s, this.y * s);
|
||||
}
|
||||
|
||||
dot(v2: Vector) {
|
||||
return this.x * v2.x + this.y * v2.y;
|
||||
}
|
||||
|
||||
magnitude2() {
|
||||
return this.x * this.x + this.y * this.y;
|
||||
}
|
||||
|
||||
magnitude() {
|
||||
return Math.sqrt(this.magnitude2());
|
||||
}
|
||||
|
||||
normal() {
|
||||
const mag = this.magnitude();
|
||||
return new Vector(this.x / mag, this.y / mag);
|
||||
}
|
||||
|
||||
leftNormal() {
|
||||
return new Vector(-1 * this.y, this.x);
|
||||
}
|
||||
}
|
||||
|
||||
const vec = (x: number, y: number) => new Vector(x, y);
|
||||
|
||||
type Shape = Vector[];
|
||||
|
||||
type Projection = { min: number; max: number };
|
||||
|
||||
function colliding(shape1: Shape, shape2: Shape) {
|
||||
const genAxes = (shape: Shape) => {
|
||||
if (shape.length < 3) {
|
||||
throw new Error("A Shape must be a polygon.");
|
||||
}
|
||||
return true;
|
||||
|
||||
const axis = (idx: number) => {
|
||||
const p1 = shape[idx];
|
||||
const p2 = shape[idx === shape.length - 1 ? 0 : idx + 1];
|
||||
return vec(p1.x - p2.x, p1.y - p2.y)
|
||||
.normal()
|
||||
.leftNormal();
|
||||
};
|
||||
|
||||
return shape.map((_: Vector, idx: number) => axis(idx));
|
||||
};
|
||||
}).call(this);
|
||||
|
||||
const genProjection = (shape: Shape, axis: Vector) =>
|
||||
shape.reduce(
|
||||
({ min, max }: Projection, v: Vector) => {
|
||||
const p = axis.dot(v);
|
||||
return { min: p < min ? p : min, max: p > max ? p : max };
|
||||
},
|
||||
{ min: axis.dot(shape[0]), max: axis.dot(shape[0]) }
|
||||
);
|
||||
|
||||
const axes = [...genAxes(shape1), ...genAxes(shape2)];
|
||||
|
||||
// The logic here may be wrong. I may have to invert the return on the whole expression.
|
||||
return axes.some((axis) => {
|
||||
const proj1 = genProjection(shape1, axis);
|
||||
const proj2 = genProjection(shape2, axis);
|
||||
return !(
|
||||
(proj1.min >= proj2.min && proj1.min <= proj2.max) ||
|
||||
(proj1.max >= proj2.min && proj1.max <= proj2.max) ||
|
||||
(proj2.min >= proj1.min && proj2.min <= proj1.max) ||
|
||||
(proj2.max >= proj1.min && proj2.max <= proj1.max)
|
||||
);
|
||||
});
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue