// Copyright (c) 2012 Elf M. Sternberg
//
//  Much of the code here I would never have understood if it hadn't
//  been for the patient work of Caleb Helbling
//  (http://www.propulsionjs.com/), as well as the Wikipedia pages for
//  the Separating Axis Theorem.  It took me a week to wrap my head
//  around these ideas.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.

class Vector {
    x: number;
    y: number;

    constructor(x: number, y: number) {
        this.x = x;
        this.y = y;
    }

    add(v2: Vector) {
        return new Vector(this.x + v2.x, this.y + v2.y);
    }

    scalar(s: number) {
        return new Vector(this.x * s, this.y * s);
    }

    dot(v2: Vector) {
        return this.x * v2.x + this.y * v2.y;
    }

    magnitude2() {
        return this.x * this.x + this.y * this.y;
    }

    magnitude() {
        return Math.sqrt(this.magnitude2());
    }

    normal() {
        const mag = this.magnitude();
        return new Vector(this.x / mag, this.y / mag);
    }

    leftNormal() {
        return new Vector(-1 * this.y, this.x);
    }
}

const vec = (x: number, y: number) => new Vector(x, y);

type Shape = Vector[];

type Projection = { min: number; max: number };

function colliding(shape1: Shape, shape2: Shape) {
    const genAxes = (shape: Shape) => {
        if (shape.length < 3) {
            throw new Error("A Shape must be a polygon.");
        }

        const axis = (idx: number) => {
            const p1 = shape[idx];
            const p2 = shape[idx === shape.length - 1 ? 0 : idx + 1];
            return vec(p1.x - p2.x, p1.y - p2.y)
                .normal()
                .leftNormal();
        };

        return shape.map((_: Vector, idx: number) => axis(idx));
    };

    const genProjection = (shape: Shape, axis: Vector) =>
        shape.reduce(
            ({ min, max }: Projection, v: Vector) => {
                const p = axis.dot(v);
                return { min: p < min ? p : min, max: p > max ? p : max };
            },
            { min: axis.dot(shape[0]), max: axis.dot(shape[0]) }
        );

    const axes = [...genAxes(shape1), ...genAxes(shape2)];

    // The logic here may be wrong.  I may have to invert the return on the whole expression.
    return axes.some((axis) => {
        const proj1 = genProjection(shape1, axis);
        const proj2 = genProjection(shape2, axis);
        return !(
            (proj1.min >= proj2.min && proj1.min <= proj2.max) ||
            (proj1.max >= proj2.min && proj1.max <= proj2.max) ||
            (proj2.min >= proj1.min && proj2.min <= proj1.max) ||
            (proj2.max >= proj1.min && proj2.max <= proj1.max)
        );
    });
}